Craig Interpolation and Access Interpolation with Clausal First-Order Tableaux
نویسنده
چکیده
We show methods to extract Craig-Lyndon interpolants and access interpolants from clausal first-order tableaux as produced by automated first-order theorem provers based on model elimination, the connection method, the hyper tableau calculus and instance-based methods in general. Smullyan introduced an elegant method for interpolant extraction from “non-clausal” first-order tableaux. We transfer this to clausal tableaux where quantifier handling is based on prenexing and Skolemization. A lifting technique leads from ground interpolants of Herbrand expansions of Skolemized input formulas to quantified interpolants of the original input formulas. This is similar to a known interpolant lifting by Huang but based more straightforwardly on Herbrand’s theorem instead of the auxiliary notion of relational interpolant. Access interpolation is a recent form of interpolation for formulas with relativized quantifiers targeted at applications in query reformulation and specified in the constructive framework of Smullyan’s general tableaux. We transfer this here to clausal tableaux. Relativized quantification upon subformulas seems incompatible with lifting techniques that only introduce a global quantifier prefix. We thus follow a different approach for access interpolation: A structure preserving clausification leads to clausal ground tableaux that can be computed by automated first-order provers and, in a postprocessing step, can be restructured such that in essence the interpolant extraction from Smullyan’s tableaux becomes applicable. Revision: February 14, 2018
منابع مشابه
A refinement of the Craig–Lyndon Interpolation Theorem for classical first-order logic with identity
We refine the interpolation property of classical first-order logic (without identity and without function symbols), showing that if Γ & , & ∆ and Γ $ ∆ then there is an interpolant χ, constructed using only non-logical vocabulary common to both members of Γ and members of ∆, such that (i) Γ entails χ in the first-order version of Kleene’s strong three-valued logic, and (ii) χ entails ∆ in the ...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملCraig Interpolation in Displayable Logics
We give a general proof-theoretic method for proving Craig interpolation for displayable logics, based on an analysis of the individual proof rules of their display calculi. Using this uniform method, we prove interpolation for a spectrum of display calculi differing in their structural rules, including those for multiplicative linear logic, multiplicative additive linear logic and ordinary cla...
متن کاملGeneralized interpolation in CASL
In this paper we consider the partial many-sorted first-order logic and its extension to the subsorted partial many-sorted first-order logic that underly the Casl specification formalism. First we present counterexamples showing that the generalization of the Craig Interpolation Property does not hold for these logics in general (i.e., with respect to arbitrary signature morphisms). Then we for...
متن کاملA Semantic Approach to Interpolation
Craig interpolation is investigated for various types of formulae. By shifting the focus from syntactic to semantic interpolation, we generate, prove and classify a series of interpolation results for first-order logic. A few of these results non-trivially generalize known interpolation results; all the others are new. We also discuss some applications of our results to the theory of institutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.04982 شماره
صفحات -
تاریخ انتشار 2018